AN EXAMPLE OF TRANSONIC FLOW OF A GAS WITH
A SUPERSONIC ZONE, TERMINATED BY A
CURVED SHOCK WHICH ENDS INSIDE THE FLOW
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I. BIBOSUNOV
(Frunze)

In Ref. [ 1], Frankl constructed an example of transonic flow, with a
supersonic zone that is terminated on the downstream side by a straight
shock which ends in the flow. The present work gives an example of the
same type, with a curved shock. Our solution is based on the equations
of Falkovitch [2], substituting Chaplygin’s equation in the vicinity
of the sonic speed. Namely,
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where 0 is the angle of inclination of the velocity, n is a function of
the velocity which was introduced by Frankl [3 ], ¢ is the velocity
potential, ¢ 1is the stream function.

Variation of entropy and thus, of vorticity, behind the shock are
neglected, which is permissible near sonic speed, since a jump in entropy
is proportional to the cube* of the jump in the normal velocity.

The stream function and the velocity potential separately satisfy the
equations

B B e

* Corrected by translator; "square" appears in original,

431



432 I, Bibosunov

For the stream function in the subsonic region we shall seek a solu-
tion of the form

9 6%
=42 = w[o(— 5 5) +eg(— 73] (3)
In the 675 plane the shock appears in the form of two curves,
3 0 3 8,
A N =k
2 (= 2y ®

in the supersoni¢ half and the subsonic half, respectively, of the plane.
On the characteristic which goes through the origin we have
— 7y =1 (5)
Equation (3) is also valid at points of the 75 plane which are above
the characteristic (5). Below this characteristic we have

b= 90 = ntfof (— 3 5) + 8 (— 757)] (6)

On crossing the characteristic (5), the stream function must be con-
tinuous, i.e.

af (1) + Bg (1) = /(1) + g (1) (M
where f and g are hypergeometric functions, as follows:

In the subsonic zone, (8,)
f@y=—F(—1, —%, 4+, 2, g(z)———(-z) 5 F(—L, =2, 2 3
$(z)=—7*[F(—1, — %, 2,Z)-i-s(—-z)”*’("----- — 25 2]

Below the characteristic, (82)

f(z)'—'_l’(""l 47 2!2)7 g(z)—V3Z“F(""“‘ _"g—?%f z)

Yz) = — 9t [aF (—1, — 5, 5, Z)—3V3Z2F(-~~;y — 5 9]
Above the characteristic in the supersonic zone
J@=—F(—1, —5, 5, 2 (8)
g =AsF (-1, —1, 2, H_B(—)"F(—5, =+, 5. 1)
b)) =—mF(—1, —&, %
—B(—2)"F(—2, —4, 3,

)
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In these formulas
(89)
r{3ir{(—-=L r{3ir(t
2= — g, A= (2)5( ) —0.5382, B= 52‘ (31) = — 0.5625
- Do Jeey

The coefficient — v/ 3 is chosen so that, along the characteristic,
the value of g(z) above the characteristic corresponds to the value be-
low the characteristic. The minus sign in the expression for f(z) is
chosen so that the shock will lie to the right of the zero streamline
[1]1. It is known that the velocity vectors ahead of and behind the shock
are related by the relation [4],

1
(0:—6,)® = 5 (M2 — M)* (— " — M) )
The boundary condition on ¢ and s along the shock has the form (4),
dp __ = —ms
@ =ECY =5 (10y

where C is defined in formula (1).

It is evident that the velocity potential and stream function are
continuous across the shock:

) :¢(2)= %, (!)(1) — 4)(2) — ¢ (11)
From equations (3), (4) and (11) we find that
af (k%) + Bg (h1%) = B4 [/ (— k?) + e (— ks?)) (k=) (12)

Now, using equations (3), (6) and (8) we write
do'V — m — 7 de'? V—— 1
Adq,(l) =+ 1’ dq,(?} (13)

Next we find ¢; it can be easily shown that

PR ¢ R S o 9 f):l (below the
P = = )" [ocf < >+B° ( 4 characteristic)

o @ e e/ Y 9 6 {(above the
o=@ = [F (=g )t (7))

characteristic)

(14)

where f° and g° are hypergeometric functions, as follows:
In the subsonic zone,

P =2C(—"F (=L, —1, 2,2, @@=—2iCF(—=2, =%, 1,2

anﬁmﬁkﬁwm—%’“h%”@"gFP%’_%“?m
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Below the characteristic,

P@=—3C"F (=3, =1, 4,9, 8@ =ZCF(—3, —%, 1.9
(15,)
?(0) = ()" Cl—at"F (=1, —1, 3, )48 2F (=2, =2, 1,2

Above the characteristic in the supersonic zone,
@)= 5C(—2)"F (— 7’——’1,%> z)
g°(z) =—+ C (D (—2)"F (— “f“v

’jy ’5‘! "") +
+E(—z)”'F(——%, — %, =, D (153)
o(z) = (—m)"C{LF(— L, —1, 2, 5)—

~%wﬁﬂ—%«—L%~%+&“—%,—%«iém

3

Here C and z are defined by formulas (1) and (8), while

rE)re) r)r=2) ]
D—m —0.3591, E:mm—&?ﬁ% (15,)

From equations (3), (6) and (14), and taking into account equations
(4) and (12), we obtain from the preceding equations (13},

9V 2(af° (k) + Bg° (k)] = 8CV 1 —k [of (k%) + Bg (kD] (16))

9V 22/ (k%) + Bg® (k,®)] = —8CV 1T —klaf (kr®) + Bg (k2] (162)

9V 2k[s (— k) -+ eg® (— k)] = 8CVI — K If (— k?) +og (— k)] (17,)

9V 2k [p(— ks®) + eg°(— k)] = — 8CV1 — k[ (— k) +eg (— k)] (172)
From equations (7) and (12) we find @ and 8. Thus

_ Bk e (=R e ()—1/ (1) +eg (D] g (k)
}‘{"‘lz) (I)Hf(l)g(kl) (18)
= UM+ (k) — B (— k) 4 g (= kI (D)
g fk?) g (1) — 1 (1) g (ke*)

Putting (18) into equations (16), we obtain

OV2LEDH g —7() g (k)] —8CVI—k[/ (k> g(1) —
— (1) g (kDI k] (—k*) + eg (— k)] — [9 (k%) g (k) —
—J(RD E *I () +g(DIV2=0 (19)
PV2rEDeW)— 7)) g kN +8CVI—k[f (kg (1) —
— (1) g (kA Ef (— kSP) H2g (— k)] — 1/° (k7 g (k%) —
— [ (B SR +eg(NI9V2=0 (192)
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Now, from equatmns (4), (9) and (12) we find that
2kt —ky =1 SEA+h (20,)

or
2 s 1—k
2kt = Y S+ b (20,)
Thus, we have obtained equations (17), (19) and (20), which make it
possible to find the constants a, 8, ki’ kz, k.

From equations (8 ), (82) and (151), (152), expanding in series, we
obtain

Fl?) = — (4 akP+..), (k) = — 2 Clhy +mhS+ ...)

gk = VIt + 0k + .., & () =L Cl+nk? +..) o
J—kt)=—(l—ak2 4 .., f(—k?) =3 Clhs—mhks + ...)

g(— k) = — (ka—bkP + ..., (=) = — S Cl —nk2 4. .)

8 5 2 5
=3 b—18’ m= 35, n=-5

We also expand the quantities kl’ ky, k 1in series:
kx=’-“13+.-., k2=313+..., k=1—"{12€2+...,
ne=V1—k+... (22)

Using (21) and (22), equations (17,), (19,), (20,) and (17,), (19,),
(20,) take the following form:

(24 YV 2u, —8y—3V6)g(l)e+...=0
(24 V§[31+8‘\'1‘*3V2—)3+ e =0 (23y)
[33@({31——«&1)—-211]5—}-... =0
24V 20+ 81, —3V6)g()e +...=0
(24V2B—811—3V2)e+... 0
0

(235)
[?_3@(“1 --8) “‘271]S+... =

From these we obtain
24 2a,— 8y, —3Y6 =0
24V28, +81,—3V2 =0 (24,)
2(31—“1)_3‘/5'{1 =0
24V 2a;+87,—3Y6=0
24 VEBI— 81 —3Y2=0 (24,)
20 —B) —3V2n=0
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Thus, to determine the constants a,, B,, y,, it is necessary to use
either the system of equations (24,) or the system (24,).

In the case of (241), we have

£ 13 5 1 20- 13
ay =0 o o081, By =000 mgmay, oy, = 2SR — 00352 (29)

If the system of equations (242) is used, the other value of y, 1s
obtained. It turns out that for ¢ < 0 it is necessary to take the first
value, i.e. the system (241), and for ¢ > 0, the second value, 1i.e. the
system (24,); but y e is positive by definition.
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Fig. 2.

Since, in what follows, we take ¢ < 0, for reasons that appear later,
we use the solution of the first system. Then, with the values from (25,
equations (22) give

B =0.208c 4 ..., ky=01333:4 ..., A=1—0001224 ..

In what follows, we will assume ¢ < 0, and specifically will take
€ =—- 0.1. In this case, 8 > 0 withn = 0, we find ¢ < 0, from which it
follows that the approaching streamline which passes through the end of
the shock lies entirely in the subsonic region.

our problem then is the construction of this particular example. We
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have
k; = —0.0208, ky = —0.0133, k = 0.9999 (26)
From equations (4), together with (26), we have
9, = — 0.0138 (— ), 0, = — 0.0088 m,'r (27)
This curve is shown in Fig. 1, in the 0,5 plane. From equations (27)
and (12) we obtain 6,/0, = 0.6376 3/2

Taking the value of k from equation (26),

02 = 0,6375 01 (28)

In equation (1), x = 1.4 for air; then C = 2.111, Using (26) we obtain
from equations (21), to a first approximation, (29)
f(k?) =—1, g (k1?) = — 0.0360, 1° (k%) =0.4171, g° (k) = 1.2188
J(—ke?)y=—1, g(—k?) =0.0133, FP(— k) = — 00748, g°(— ky?) = — 0.7036

From equations (18) and (29) we obtain
o = 1.0034, B = —0.0945 (30)
Next we find the relation of x and y to 7, along the shock:
=9 = ¢@=_1.00137t, ¢=o¢W =o® = _0.0045 7" (31)

Now from Chaplygin’s formulas, we have

dz =080 g0 Pogingay, dy— Pocosody 4 89 4o
pw

w pw w

We find that

dz:[;?-{—_%(_i—)n_on—{-...]dq:—-[s%+...](0+...)d¢

W= [Pfoa‘ +din(p%%>m=o +%;_:2(5%)m=o T ] d¢+(e+...)(ai,+...) i@
or
N
a* dx=d<p+[(x+1)—'/-n+...]dq>—<"‘;1‘x_1 ©+...)dd
1 1
« d”=<ﬁé_i‘)>x‘l [1+(“+M’l2+-- -]d¢+(“2‘1)x_1 (+ 1) 0de

Integrating both parts, we obtain

L

a'x=<p+(x+1)—%S1)d<p-—(x_;.1>x ISOdq;—f-

1 1 1

wy = (T + (+ 1)"__1 "‘ *;“"’Snz 2+ (2 et 1y foee @
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From here (with § = —~ 0.0088y 3/2 and x = 1.4 for air), together with
equation (31), we obtain
8°z == — 0.0045 7' — 0.0129 "3, a’y = — 1.5791 78— 0.7045 78 (33)

Thus, in this given case, we obtain the equations of the shock, which,
looking from the end of the shock, is directed upstream.

Next,we will find x and y for n = 0 (i,e. the sonic line); for this,
we express iy and ¢ in terms of §. We know that

‘ 4 1 s 5 3
pm—ut[F (=1, =2, L] e F (=5, =5, 3]
?='§YJ‘J’ [8(_2)11‘1?(_%7 —-1, ”Z—s z) + SF(-—-'—:, "‘%9 ’g“y Z)]
For n =
¢ = —0.1658 6°1», a‘:r::qa—-—1.5777§6d¢
9 = — 4.3075 63, a‘y=1.5777¢+2.1111§6dq>
or 1 8
@'z = — 4.3070 6% -+ 0.1901 6", a*y = — 0.1829 6" — 6.8190 64 (34)

Next we find x and y on ¢y = 0 (i.e. the zero streamline). We know
that

b=—ut[F (=1 —%. T )+e<~—~z>"f(——— 5 5 A=
==t 4+ 2 +ef—nar (-1, —1, L, 1, Dy
+(—2)"BF (=%, —%. o %)J}=—-(«§~)"‘e‘“ (o7 (142 o) +
be [ o an (2) 48R ()] = - () (2= ) +
efra(t =Lt ) F BR (-] = (2)07 (hy (9) + e (1))

Here
hm) =7 (v—2), b (O=— %

he (1) = At (1 — 2 13) 4 BFy (—9)

- 4 3\ -
ke’ (0) = —-—%—*—‘——0.5623, 1:1.9__2) =(—z) 3
for which A and B are given by formulas (8).

Let =0 forr =7"andr =r” (i.e. for 2= z" and z = z”); then

h(t) = hy (7) + ek (1) =0

It is easily seen that

hl(r) =0 for r =0 and r = (8/3)1,3



Example of transonic flow of a gas with supersonic zone

439
Thus, h, (0) = h,[(8/3)1/31= 0. Let r = r”; then
h(t)=h(7)+ehy (1) =0
Expanding hl(r’) in a Taylor series we obtain
hE)=hO+1tTh’O+...=7K"0)4...
It follows that
i — o @ _3p._ 39
T'hy’ (0) 4 €hy (0) =0, T = shl(O) —?Be_ 51 C
or
" = 0.0211, 2 = — :r% =106 382.9780 (35)

This value, z = z’, corresponds to the front part of the streamline.
The other value, z = z”, corresponding to the rear part (downstream from

the end of the shock) is close to the root of the equation f(z) = 0
(z =~ 3/8).

Expanding in series we have, to a first approximation,

0= (2" — zo) ' (20) + €g (3,)

” o g (20) —__ 8
2" —zy=—¢ " 0) = ?Eg(zo)
since f’(z,) = 8/3. Thus
v__ 3 3\l 1 5 3 8 -
4 =—8_ [1—(—;) eF (——‘;, - —a’, ?, '--—3‘)] = — 0.3545 (36)

In this manner we obtain z” =

= ~— 106382.9780, z” = - 0.3545. It follows
that the equations

' .
a={—2 8N _ 00276 0"
\ 4oz

= (__9_ 62 ) —1.8517 0%
4 z"

define the zero streamline in the Oq plane; it is shown graphically in
Fig. 1.

(37)

From equation (32), for ¢y = 0, we obtain

1
a*r =9+ (x 4 1)—-%\‘”’1'1‘9’ 'y = (x 2 1)*—1 e 1) S Ode

Now, using the value z = 2° =

— 106382.9780, we calculate ¢. Correspond-
ing to (15),

(38)

e=nh (B (=L, —1, 2, 5)—eF (=2, —

. —;', z)] =
— ot~ 4 0L () PP (=2, 1,3, 1)1
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=2.11116% {979 — 24 %L [(3’.)”’ D1+ 2 1)

FEE R (-2 -1, 2 - )

”

Taking r = r” = 0.0211, we obtain

@ = — 4.1166 93 (39)
From the other side,
v, C : 1 3 2 5 1
(p:‘f]’—a—[g(.._qz)hﬁ‘(w..g.’m']’ “é‘vz)‘_ep(—"._z‘:_—“g‘9 "é’az)]
so that, for z = z” = — 0.3545 we obtain
@ = 3.0736 4 (40)

From equations (3%), (40) and (38), taking into account (38), we cb-
tain

114

At = — 41166 0% — 0069407, 'y = — 6.51790¢ (41)
a*x = 49.1668 0% -|- 55.6299 6™, aty = 77.8468 04 (42)

Table 1 gives the coordinates of the shock and the sonic line in the
xy plane, and Table 2 gives the coordinates of the zero streamline.

Table 1
Shock Sonic line
n —x —y g - —y
0.50 0.0005 0.1096 0.50 0.5235 0. 1549
0.75 0.0038 0.6249 0.75 1.7500 2.2424
1.00 0.0174 2.2836 1.00 4.1169 7.0019
1.25 0.0564 6.,5426 1.25 7.9813 16.9794
1.50 0.1478 16.0186 1.50 13.7956 35.0602
1.75 0.3359 35.0454 1.75 21.6036 64.7680
2.20 0).6854 70.2536 2.00 32.0425 110.2650
2.25 1.2900 131.8769 2.25 45.3415 176.3532
2.50 2.2701 233.6806 2.50 61.8255 268.4728
2.75 3.7904 395.0176 2.75 81.8124 392.7062
3.00 6.0810 641.4876 3.00 105.6150 555.8628
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Table 2
Equation (41) Equation (42)

0 x v x v
0.10 — 0.0041 — 0.0008 0.0602 0.0077
0.25 — 0.0646 — 0.0254 1.1119 0.3036
0.50 — 0.5199 — 0.407%4 10.5238 4.8654
0.75 — 1.76804 — 2.16822 40.1088 24.6307
1.00 — 4.1860 — 6.5179 104.7967 77.8468
1.25 — 8.1973 — 15,9128 222.0627 109.0551
1.50 —14.2003 — 32.9968 411.8943 394.0994
1.75 —22.6025 — 61.1307 696.4052 730.1173
2.00 —33.8139 —104.2864 1099.6116 1245.5488
2.25 —48.2478 —167.0466 1648.0265 1995.1278
2.50 —66.3192 —254.6054 2369.3264 3040.8906
2.75 —88.4448 —-372.7710 3293.2022 4452.2064

In closing, I should like to express my sincere thanks to my instructor,

F.I, Frankl, for valuable advice during the completion of this problem,
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